Solving the Likelihood Equations
نویسندگان
چکیده
Given a model in algebraic statistics and data, the likelihood function is a rational function on a projective variety. Algebraic algorithms are presented for computing all critical points of this function, with the aim of identifying the local maxima in the probability simplex. Applications include models specified by rank conditions on matrices and the Jukes-Cantor models of phylogenetics. The maximum likelihood degree of a generic complete intersection is also determined.
منابع مشابه
Maximum Likelihood Estimation in Generalized Gamma Type Model
In the present paper, the maximum likelihood estimates of the two parameters of a generalized gamma type model have been obtained directly by solving the likelihood equations as well as by reparametrizing the model first and then solving the likelihood equations (as done by Prentice, 1974) for fixed values of the third parameter. It is found that reparametrization does neither reduce the bulk n...
متن کاملThe eect of indicial equations in solving inconsistent singular linear system of equations
The index of matrix A in Cn.n is equivalent to the dimension of largest Jor-dan block corresponding to the zero eigenvalue of A. In this paper, indicialequations and normal equations for solving inconsistent singular linear systemof equations are investigated.
متن کاملSolving the liner quadratic differential equations with constant coefficients using Taylor series with step size h
In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.
متن کاملOn the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملT-Stability Approach to the Homotopy Perturbation Method for Solving Fredholm Integral Equations
The homotopy perturbation method is a powerful device for solving a wide variety of problems arising in many scientific applications. In this paper, we investigate several integral equations by using T-stability of the Homotopy perturbation method investigates for solving integral equations. Some illustrative examples are presented to show that the Homotopy perturbation method is T-stable for s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Foundations of Computational Mathematics
دوره 5 شماره
صفحات -
تاریخ انتشار 2005